Abstract

The functionalized multi-walled carbon nanotubes (MWCNTs) carbon fiber reinforced polycarbonate with multifaceted intrinsic features have been fabricated to explore its structural and sustainable reliability in diverse industrial applications. A technologically simple air spray deposition method was used to modify the carbon fiber with various concentrations (0.1, 0.3, 0.5, and 0.7 wt%) of amine-MWCNTs. The fiber/film stacked composites were fabricated using the hot stamping technique. The interlaminar shear strength of the 0.7 % MWCNT reinforced composite is 50.77 MPa, which is 65.90 % higher than the neat composite. The interlaminar properties predicted through the integrated micromechanical modeling (Digimat-FE) and Abaqus FEA agree well with the experimental results. The 0.1 % CNT reinforcement possesses higher storage (2593 MPa) and loss (457.5 MPa) modulus compared to the neat sample. The continuous conducting network structure enables the maximum shielding effectiveness (SE) of 45.77 dB with 99.995 % efficiency for 0.7 % MWCNT-CF reinforced sample. The electrochemical performance of a symmetric pouch-type supercapacitor device developed from reclaimed carbon fiber (RCF) was investigated. The device has an areal energy density of 102 μWh/cm2 and an areal power density of 2.96 mW/cm2 at 1.5 mA/cm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call