Abstract
The structural collapse and surface chemical degradation of nickel-rich layered oxide cathodes (NCM) of lithium-ion batteries during operation, which result in severe capacity attenuation, are the major challenges that hinder their commercial development. To improve the cycle and rate performances of LiNi0.8Co0.1Mn0.1O2 (NCM811), in this study, we have constructed a double-shell structure protective layer with a surface CeO2-x coating and interfacial spinel-like phase, which mitigate particle microcrack formation and isolate the NCM811 particles from electrolyte erosion. Additionally, during heat-treatment calcination, tetravalent cerium ions with strong oxidation ability can be partially doped into the material, which causes partial oxidation of Ni2+ to Ni3+, thereby reducing the Li+/Ni2+ mixing. The strong Ce-O bonds formed in the lattice help to improve the stability of the structure in the highly de-lithiated state. Thus, the synergy of multifunctional cerium modification effectively improves the structural stability and electrochemical kinetics of the material during cycling. Impressively, the obtained Ce-NCM811 exhibits capacity retention of 80.3% at a high discharge rate of 8 C after 500 cycles, which is much higher than that of the pristine cathode (only 44.3%). This work successfully designed a material with multi-functional Ce modification to provide a basis for Ni-rich cathode materials, which is crucial as it effectively improves the electrochemical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.