Abstract

With the multi-functional molecular device based on graphene nanoribbon being deeply studied in experiment, the zigzag-edged graphene device is still worth to investigate. Employing the ab-initio method, the spin transport properties have been studied for the nanojunctions consisting of a p-phenylene vinylene (PPV) molecule sandwiched between two-probe leads of zigzag-edged graphene nanoribbons (ZGNRs). A series of obvious electromagnetic transmission functionalities, including spin switching, negative differential resistance (NDR), dual spin-filtering, magnetoresistance and spin-diode behaviors, are numerically referred in the proposed molecular junction within spin parallel or antiparallel configurations. The performance of switching and double spin filtering can be explained by the transport spectra or total transmission pathways. Besides, the rectification effect is due to the asymmetry spatial distribution of the local density of states as well as the corresponding coupling between the PPV molecule and leads. It is expected that the designed models can be ideal candidate for future spintronic device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.