Abstract
Cellulose nanofibrils (CNFs) and single-walled carbon nanotubes (SWNTs) hold potential for fabricating multifunctional composites with remarkable performance. However, it is technically tough to fabricate materials by CNFs and SWNTs with their intact properties, mainly because of the weakly synergistic interaction. Hence, constructing sturdy interfaces and sequential connectivity not only can enhance mechanical strength but also are capable of improving the electrical conductivity. In that way, we report CNF/SWNT filaments composed of axially oriented building blocks with robust CNF networks wrapping to SWNTs. The composite filaments obtained through the combination of three-mill-roll and wet-spinning strategy display high strength up to ∼472.17 MPa and a strain of ∼11.77%, exceeding most results of CNF/SWNT composites investigated in the previous literature. Meanwhile, the filaments possess an electrical conductivity of ∼86.43 S/cm, which is also positively dependent on temperature changes. The multifunctional filaments are further manufactured as a strain sensor to measure mass variation and survey muscular movements, leading to becoming optimistic incentives in the fields of portable gauge measuring and wearable bioelectronic therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.