Abstract

Wearable devices that can be used to monitor personal health, track human motions, and provide thermotherapy, etc., are highly desired in personalized healthcare. In this work, a multifunctional wearable "wrist band" which works as both heater for thermotherapy and sensor for personal health and motion monitoring is fabricated from a flexible and conductive carbon sponge/polydimethylsiloxane (CS/PDMS) composite. The key functional material of the wrist band, namely, the conductive CS, is synthesized from waste paper by a freeze-drying and high-temperature pyrolysis process. When the wrist band works as a heater under 15 V, a stable temperature difference of 20 °C is achieved between the wrist band and the ambient. When the wrist band serves as a wearable strain sensor, the wrist band exhibits fast and repeatable response and excellent durability within the strain range of 0-20% and the working frequency of 0.01-10 Hz. Finally, the typical applications of the multifunctional wearable wrist band, as a heater for thermotherapy and a sensor for blood pulse, breathe, and walk monitoring, are demonstrated. Due to its low cost, high flexibility, moderate conductivity, and excellent strain sensibility, the as-prepared wearable device based on the CS/PDMS composite is promising to be applied for the provision of personal healthcare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call