Abstract
Developing environmentally benign, multifunctional waterproof and breathable membranes (WBMs) is of great importance but still faces enormous challenges. Here, an environmentally benign fluorine-free, ultraviolet (UV) blocking, and antibacterial WBM with a high level of waterproofness and breathability is developed on a large scale by combining electrospinning and step-by-step surface coating technology. Fluorine-free water-based alkylacrylates with long hydrocarbon chains were coated onto polyamide 6 fibrous membranes to construct robust hydrophobic surfaces. The subsequent titanium dioxide nanoparticle emulsion coating prominently decreased the maximum pore size, leading to higher water resistance, endowing the membranes with efficient UV-resistant and antibacterial properties. The resulting fibrous membranes possessed excellent waterproofness of 106.2 kPa, exceptional breathability of 10.3 kg m-2 d-1, a significant UV protection factor of 430.5, together with a definite bactericidal efficiency of 99.9%. We expect that this methodology for construction of environmentally benign and multifunctional WBMs will shed light on the material design, and the prepared membranes could implement their promising applications in covering materials, outdoor equipment, protective clothing, and high-altitude garments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.