Abstract

Ti–B–C–N and Ti–Si–B–C–N nanocomposite coatings were deposited on AISI 304 stainless steel substrates by DC unbalanced magnetron sputtering from two (80mol% TiB2–20mol% TiC and 40mol% TiB2–60mol% TiC) composite targets in various Si target powers. The relationship among microstructures, mechanical properties, and tribologiacal properties was investigated. The synthesized Ti–B–C–N and Ti–Si–B–C–N coatings were characterized using x–ray diffraction (XRD) and x–ray photoelectron spectroscopy (XPS). These analyses revealed that the Ti–Si–B–C–N coatings are nanocomposites consisting of solid-solution (Ti,C,N)B2 and Ti(C,N) crystallites distributed in an amorphous TiSi2, SiC, and SiB4 matrix including some carbon, BN, CNx, TiO2, and B2O3 components. The addition of Si to the Ti–B–C–N coating led to percolation of amorphous TiSi2, SiC, and SiB4 phases. The Ti–Si–B–C–N coatings exhibited high hardness and H/E values, indicating high fracture toughness, of approximately 35 GPa and 0.098, respectively. Furthermore, the Ti–Si–B–C–N coatings exhibited very low wear rates ranging from ~3×10-7 to ~16×10-7 mm3/(N·m). The minimum friction coefficient of the Ti–Si–B–C–N coatings was approximately 0.15 at low Si target power between 25W and 50W. A systematic investigation on the microstructures, mechanical properties, and tribological properties of Ti–Si–B–C–N coatings prepared from two TiB2–TiC composite targets and one Si target is reported in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.