Abstract

The power conversion efficiency (PCE) and stability of n-i-p perovskite solar cells (PSCs) are significantly affected by inherent defects of SnO2 and perovskite layers. In this work, we incorporate 2-bromo-3-thiophenic acid (BrThCOOH) as a multifunctional passivant to simultaneously passivate the defects of SnO2 surface and perovskite layer. BrThCOOH permeates evenly into the MAPbI3 and coordinates with Pb2+ and iodine vacancies (VI+) to reduce surface defect density and inhibit the decomposition of MAPbI3. Carboxylic acid effectively passives the oxygen vacancy on the surface of SnO2 through coordination bonds, reducing the probability of electron capture by SnO2 surface defects, thus contributing to electron transport in device. The interaction of BrThCOOH with MAPbI3 and SnO2 surfaces leads to an upward shift in energy levels, reducing energy loss during charge migration. The optimal MAPbI3 device with BrThCOOH-modified SnO2 (T-SnO2) reveals an improved PCE of 21.12%, much higher than that of the control one (19.12%). The hydrophobicity of BrThCOOH-modified MAPbI3 is also improved, which is beneficial to the durability of the device. After 100 h of storage in the environment, the generated PSCs maintain their initial PCE of 75%, demonstrating excellent long-term stability without any encapsulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call