Abstract

Multifunctional theranostic nanoplatforms (NPs) in response to environment stimulations for on-demand drug release are highly desirable. Herein, the near-infrared (NIR)-absorbing dye, indocyanine green (ICG), and the antitumor drug, doxorubicin (DOX), were efficiently coencapsulated into the thermosensitive liposomes based on natural phase-change material. Folate and conjugated gadolinium (Gd) chelate-modified liposome shells enhance active targeting and magnetic resonance performance of the NPs while maintaining the size of the NPs. The ICG/DOX-loaded and gadolinium chelate conjugated temperature-sensitive liposome nanoplatforms (ID@TSL-Gd NPs) exhibited NIR-triggered drug release and prominent chemo-, photothermal, and photodynamic therapy properties. With the coencapsulated ICG, DOX, and the conjugated gadolinium chelates, the ID@TSL-Gd NPs can be used for triple-modal imaging (fluorescence/photoacoustic/magnetic resonance imaging)-guided combination tumor therapy (chemotherapy, photothermotherapy, and photodynamic therapy). After tail vein injection, the ID@TSL-Gd NPs accumulated effectively in subcutaneous HeLa tumor of mice. The tumor was effectively suppressed by accurate imaging-guided NIR-triggered phototherapy and chemotherapy, and no tumor regression and side effects were observed. In summary, the prepared ID@TSL-Gd NPs achieved multimodal imaging-guided cancer combination therapy, providing a promising platform for improving diagnosis and treatment of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call