Abstract

AbstractUsing sensing devices for noncontact information transfer enhances data security in human‐machine interaction by eliminating direct contact between the information carrier and the communication interface. However, current contactless information transfer strategies struggle with complex application scenarios due to limitations in sensing mechanisms. Here, this work proposes an innovative noncontact information transfer approach that leverages invisible thermal radiation and the Seebeck effect, and demonstrates its feasibility by designing a high‐resolution temperature sensor based on a laminar thermoelectric aerogel of carbon nanotube/PEDOT:PSS/nanocellulose. The sensor exhibits exceptional sensitivity, ultralow detection limits (0.02 K), rapid response time, and reliable cycling stability in temperature detection without interference from pressure stimuli. This work further presents a sensor array‐based communication interface capable of extracting, decoding, and transmitting high‐capacity encrypted information contactlessly. The interface also serves as a contactless input terminal for precisely monitoring finger movements. Additionally, the sensor can convert pressure into resistance signals, functioning as tactile electronic skin in contact scenarios. This study presents a dependable strategy for transmitting information without physical contact, contributing to the development of future integrated devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call