Abstract
A novel multifunctional gelator (1) based on an azobenzene derivative was designed and characterized. This compound could gelate some solvents including hexane, petroleum ether, DMSO, acetonitrile and ethanol through a heating-cooling procedure. The self-assembly process in different solvents was studied by means of UV-vis absorption and Fourier transform infrared (FTIR) spectra, field emission scanning electron microscopy (FESEM), rheological measurements, X-ray powder diffraction and water contact angle experiments. Interestingly, compound 1 had a high-contrast colorimetric detection ability towards Hg2+, Cu2+, Fe3+ and volatile acids and further organic amine gases in solution through its color change. At the same time, organogel 1 in acetonitrile also exhibited detection performance through a color or gel state change. In the response process, the self-assembly structures were changed from a nanofiber into a microsphere under induction by analytes. More significantly, film 1 could continuously detect volatile acids and organic amine gases. The number of cycles of film 1 for the detection of volatile acids and organic amine gases was at least seven times. The limit of detection (LOD) of film 1 towards TFA was calculated to be 0.0848 ppb. The sensing mechanisms were studied using 1HNMR, FESEM, UV-vis absorption spectra and HRMS. The intramolecular cyclization occurred on molecule 1 and a H2S molecule was lost during the detection process of Hg2+. It was proposed that the -N[double bond, length as m-dash]N- bonding could be coordinated by Fe3+ and Cu2+ and this further induced the absorption spectra and color change. For a volatile acid, it was possible that the volatile acid was combined with the N,N-dimethyl amine group of molecule 1. This research opens up a novel pathway to the fabrication of supramolecular self-assembly gels to detect polymetallic ions and trace volatile acids in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.