Abstract

Theranostics, the combination of diagnostics and therapies, has been considered as a promising strategy for clinical cancer treatment. Nonetheless, building a smart theranostic system with multifunction for different on-demand applications still remains elusive. Herein, an easy and user-friendly microemulsion based method is developed to modularly assemble upconversion nanoparticles (UCNPs) and Fe3 O4 nanoparticles together, forming multifunctional UCNPs/Fe3 O4 superparticles with highly integrated functionalities including the 808nm excitation for real-time NIR-II imaging, magnetic targeting, and the upconversion luminescence upon 980nm excitation for on-demand photodynamic therapy (PDT). With a magnet placed nearby the tumor, in vivo NIR-II imaging uncovers that superparticles tend to migrate toward the tumor and exhibit intense tumor accumulation, ≈6 folds higher than that without magnetic targeting 2 h after intravenous injection. NIR laser irradiation is then used to trigger PDT, obtaining an outstanding tumor elimination under magnetic tumor targeting, which shows a high potential to be applied in targeted cancer theranostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.