Abstract

Self-healing hydrogels with multifunctionality as a type of fascinating material show potential application in various fields, such as biomedicine, tissue engineering, and wearable electronic devices. However, to combine the properties of autonomous self-healing property, high conductivity, excellent mechanical properties, and stimuli-responsive properties for hydrogel is still a great challenge. Herein, we present self-healing conductive hydrogels based on β-cyclodextrin (β-CD), N-isopropylacrylamide (NIPAM), multiwalled carbon nanotubes (CNT) and nanostructured polypyrrole (PPY). Among them, β-CD served as the host molecule, and NIPAM served as the guest molecule, CNT as the physical cross-linker and conducting substrate, and PPY as the highly conductive component, respectively. The obtained hydrogels exhibit high conductivity, self-healing property, flexible and elastic mechanical property and rapid stimuli-responsive property both to temperature and near-infrared (NIR)-light together. The excellent ch...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call