Abstract
AbstractSulfone liquids can be used as solvents for high‐voltage electrolytes and have been extensively studied for their strong oxidation resistance. However, the problem of high viscosity and susceptibility to side reactions with metallic lithium has been the subject of criticism. To solve the issue of incompatibility with lithium, researchers adopted a high‐concentration electrolyte, namely solvent‐in‐salt, which allows the anions in the lithium salt to preferentially contact the surface of the lithium metal and react to form an SEI film to block the reaction between sulfone solvents and lithium. However, the issue of high viscosity is particularly severe. This work proposes a new solvent model called “solvent‐in‐diluent” electrolyte to address both of these issues simultaneously, different from previous models of salt‐in‐solvent, the model not only effectively prevents sulfone contact with lithium metal surfaces, but also maintains a capacity retention rate of 82% after 500 cycles in the voltage range of 2.8–4.6 V, additionally, the temperature range in which the battery can operate using this electrolyte model has been extended (−20–60°C). This work proposes a new solvent model and challenges the minimum concentration of high‐voltage electrolytes (0.04 m), providing a new approach and possibility for studying high‐voltage electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.