Abstract

AbstractTraditional microwaves absorption materials (MAMs) are applied in the form of coatings, generally inflexible, with high production costs and poor adaptability to applications in different locations. The diversification of application scenarios requires materials with multifunctionalities, but it is extremely challenging to integrate multifunctionalities within single material at present. Herein, a multifunctional CoNC@GN/PCL/TPU MAMs is synthesized. The CoNC@GN nano‐micro absorber has high‐efficiency microwave absorption ability. The electromagnetic microwave absorption performance is ultra‐light (4 wt.%), ultra‐thin (2.3 mm), and broadband (6.21 GHz), which is better than similar MAMs. Additionally, the samples have highly efficient electro‐thermal conversion properties, enabling controlled electrical heating performance and excellent self‐healing properties. More remarkably, the sample has an electrically driven shape memory effect that allows the material to target the absorption of multi‐angle incident electromagnetic waves. Therefore, CoNC@GN/PCL/TPU absorbers are the key to truly opening up opportunities for flexible, shape memory, and multifunctional absorbers in frontier applications such as wearables, deformable robots, and chip protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.