Abstract

AbstractAn issue associated with lithium−sulfur (Li−S) batteries is polysulfide dissolution, leading to the serious crossover of polysulfide to the Li anode. To address this issue, we report on a multifunctional separator prepared by introducing a porous carbon/multi‐walled carbon nanotube (PC/MWCNT) composite into a commercial separator. It shows that the PC/MWCNT composite is able to enhance the interfacial interaction between the coating and the polysulfide and provides a large surface area for absorbing the polysulfide, thus improving the electrical conductivity. It has been demonstrated that the Li−S cell constructed with the PC/MWCNT composite separator results in a reversible capacity as high as 659 mAh g−1 after 200 cycles at 0.5 C, and the average capacity fading rate of the cell is about 0.138 % per cycle. The performance improvement is attributed to a reduction in the crossover rate of polysulfide through the composite separator as a result of the polysulfide absorption by PC/MWCNT layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.