Abstract
The high chemical and structural stabilities of zirconium (Zr)-based metal-organic frameworks (MOFs) in aquatic media make them ideal candidates for wastewater treatment. Rational decoration or Zr-MOFs with functional groups can significantly extend their application in this area. In this work, two well-known Zr-MOFs, UiO-66 and MIL-140-A, were functionalized with dihydrotetrazine function to increase their capability in water treatment. Investigations reveal that these two dihydrotetrazine (DHTZ)-functionalized MOFs, namely UiO-66(Zr)-DHTZ and MIL-140(Zr)-DHTZ, can be applied as a two-component array for highly selective and sensitive discrimination of arsenate (AsO43-) and phosphate (PO43-) ions in water in the presence of other anions. Photoluminescence (PL) tests using UiO-66(Zr)-DHTZ show that this MOF can detect these two anions via a ratiometric response, 1.74 for arsenate and 1.84 for phosphate at 2 μM, with superior detection limits (7.2 × 10-8 M for AsO43- and 4.3 × 10-8 M for PO43-). The ratiometric PL response of UiO-66(Zr)-DHTZ toward arsenate and phosphate anions arises possibly from the arsenate-dihydrotetrazine hydrogen bonding. In the next step, colorimetric tests using MIL-140(Zr)-DHTZ were conducted to discriminate the arsenate from phosphate with a very low detection limit at nanomolar level. This MOF undergoes a yellow-to-pink color change in the presence of arsenate ions, while no color change is observed in the presence of phosphate. This color change is observed through conversion of dihydrotetrazine sites inside the pores of MIL-140(Zr)-DHTZ into tetrazine. Altogether, the PL response of UiO-66(Zr)-DHTZ is originated from the hydrogen bond-donating/accepting character of DHTZ function, while the colorimetric response of MIL-140(Zr)-DHTZ is based on the chemical conversion of DHTZ function. This work clearly shows that the decoration of Zr-based MOFs with multicharacter functional groups can develop their application in wastewater treatment as multipurpose platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.