Abstract

In this study, we explore a possible platform for the CO2 reduction (CO2 R) in one of water's solid phases, namely clathrate hydrates (CHs), by ab initio molecular dynamics and well-tempered metadynamics simulations with periodic boundary conditions. We found that the stacked H2 O nanocages in CHs help to initialize CO2 R by increasing the electron-binding ability of CO2 . The substantial CO2 R processes are further influenced by the hydrogen bond networks in CHs. The first intermediate CO2 - in this process can be stabilized through cage structure reorganization into the H-bonded [CO2 - ⋅⋅⋅H-OHcage ] complex. Further cooperative structural dynamics enables the complex to convert into a vital transient [CO2 2- ⋅⋅⋅H-OHcage ] intermediate in a low-barrier disproportionation-like process. Such a highly reactive intermediate spontaneously triggers subsequent double proton transfer along its tethering H-bonds, finally converting it into HCOOH. These hydrogen-bonded nanoreactors feature multiple functions in facilitating CO2 R such as confining, tethering, H-bond catalyzing and proton pumping. Our findings have a general interest and extend the knowledge of CO2 R into porous aqueous systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call