Abstract

Herein, we demonstrate the synthesis and multifunctional properties of reduced graphene oxide (RGO)-wrapped Au nanoplatelets. We have characterized the sample by field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive X-ray spectroscopy (EDS), high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF), electron energy-loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS) studies. It has been shown that the RGO wraps a large number of 2D circular Au nanoplatelets (diameter ∼15 nm). We have examined the optical property of the sample using Raman, UV–vis, and PL spectroscopic techniques. Large enhancement in intensity of Raman spectra was observed due to the surface enhanced Raman scattering (SERS) resulting from the Au nanoplatelets. The collective sway of surface plasmon resonance and fluorescence resonance energy transfer effect owing to Au gives rise to giant enhancement in intensity of phot...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call