Abstract
The exponential growth in the research field of water pollution control demands the evolution of novel sensing materials for regulation and quantification of metals ions. Within this context, the current work reports a new strategy for the synthesis of carbon dots from the hydrothermal treatment of organic nanoparticles. The organic nanoparticles are found to be selective towards Cs(I) ions with a detection limit of 5.3 nM, whereas the highly fluorescent carbon dots are found to be selective towards Ag(I) ions with a detection limit of 4.8 nM. Both sensing systems illustrate rapid sensing with a working pH range from 4-9. The interfacial molecular restructuring of the sensing systems in the aqueous phase has been investigated in the absence and presence of targeted metal ions using a sum frequency generation vibrational spectroscopic tool. The practical applicability of the sensors was checked in environmental samples. This work opens new avenues for the exploration of temperature-guided sensing modulation in nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.