Abstract
Orthopedic prostheses are the ultimate therapeutic solution for various end-stage orthopedic conditions. However, aseptic loosening and pyogenic infections remain as primary complications associated with these devices. In this study, a hierarchical titanium dioxide (TiO2) nanotube drug delivery system loaded with cinnamaldehyde for the surface modification of titanium implants, is constructed. These specially designed dual-layer TiO2 nanotubes enhance material reactivity and provide an extensive drug-loading platform within a short time. The introduction of cinnamaldehyde enhances the bone integration performance of the scaffold (simultaneously promoting bone formation and inhibiting bone resorption), anti-inflammatory capacity, and antibacterial properties. In vitro experiments have demonstrated that this system promoted osteogenesis by upregulating both Wnt/β-catenin and MAPK signaling pathways. Furthermore, it inhibits osteoclast formation, suppresses macrophage-mediated inflammatory responses, and impedes the proliferation of Staphylococcus aureus and Escherichia coli. In vivo experiments shows that this material enhances bone integration in a rat model of femoral defects. In addition, it effectively enhances the antibacterial and anti-inflammatory properties in a subcutaneous implant in a rat model. This study provides a straightforward and highly effective surface modification strategy for orthopedic Ti implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.