Abstract

A modified latex compounding approach was used to prepare graphene/styrene–butadiene rubber (GE/SBR) nanocomposites with multifunctional properties as well as enhanced mechanical property. It is found that the method is efficient in achieving a molecular level dispersion of GE nanosheets in the rubber matrix. Moreover, the well dispersed GE nanosheets have strong interfacial interaction with SBR. As a result, the mechanical property of SBR is greatly improved. Nearly 11 folds of increase in the tensile strength is attained upon addition of 7 phr of GE, which is comparable to the reinforcement effect of 30 phr of carbon black (N330) or 40 phr of fumed nanosilica. More intriguingly, the GE/SBR nanocomposites have low heat buildup and gas permeability, as well as high wear resistance, thermal stability and electrical conductivity. Such versatile functional properties promise GE/SBR nanocomposites for many new applications, for example, green tires and electronic skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.