Abstract

Nanosized ceria is an extremely versatile and commercially valuable material because of its industrially important applications. The present work describes the synthesis of ceria nanocubes by a simple hydrothermal method. The size of the synthesized ceria nanocubes are 8–20 nm. The formation of ceria phase has been corroborated by X-ray photoelectron spectroscopy and X-ray diffractometry. Selected area electron diffraction patterns obtained for the nanocubes are also precisely indexed to the cubic ceria phase. The synthesized ceria nanocubes exhibit a high surface area of $$26\hbox { m}^{2}\hbox { g}^{-1}$$ and also high catalytic activity. The work also investigates the influence of ceria nanocubes on the corrosion resistance of sol–gel hybrid coatings in 3.5% NaCl solution on AA2024 substrates. The corrosion behaviour of the sol–gel coatings revealed that ceria nanocubes reinforce the barrier properties of the sol–gel coatings and confer longer active protection to the metallic substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.