Abstract

Photocrosslinked hydrogels show great potential as dressings for skin wound healing. However, most current hydrogels suffer from poor adhesion, toxic photoinitiators, and insufficient versatility. Therefore, developing novel hydrogel dressings with appropriate properties is of great importance to accelerate the wound healing process. In this study, we developed a polysaccharide-based dual-network hydrogel consisting of azide-functionalized carboxymethyl chitosan and o-nitrobenzyl-modified hyaluronic acid (CMC-AZ/HA-NB). The hydrogel showed excellent mechanical, tissue adhesion, and water retention properties. Controllable in situ photocrosslinking was carried out without photoinitiator, avoiding issues associated with the cytotoxicity of photoinitiators. An antibacterial agent-loaded hydrogel (CMC-AZ/HA-NB@D) showed enhanced antibacterial properties. In addition, the CMC-AZ/HA-NB@D hydrogel promoted collagen deposition and vascular formation, as well as reducing the expression of pro-inflammatory factors, thereby accelerating the wound healing process and improving skin regeneration. The present results highlight the promising potential of multifunctional photoinitiator-free polysaccharide hydrogels for application in wound dressings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call