Abstract

In this study, multifunctional polyester fabrics with the features of self-cleaning, water and stain repellency, and thermal stability were prepared utilizing a multicomponent system. To this end, both unmodified and alkaline-hydrolyzed modified fabrics were treated with nano TiO2/citric or maleic acid/sodium hypophosphite/polysiloxane and triethanolamine via a pad-dry-cure method. Surface morphology and color variation of the samples were studied utilizing field emission scanning electron microscopy (FESEM) and CIE-Lab system, respectively. Also, energy-dispersive X-ray (EDX) analysis indicated the content of Ti, P and Si on the surface of fabrics. Thermal stability of the specimen was scrutinized through thermal gravimetric analysis (TGA) and char yield. Both hydrolysis treatment and silicone softener increased the uptake of the nanoparticles. Also, in a comparison between the utilized carboxylic acids, citric acid demonstrated superior features. Generally, the treated fabrics showed desirable self-cleaning and stain repellency with some enhanced thermal stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call