Abstract

This study added different types of graphene (GN-1 and GN-2) in to LaMnO3/Fe3O4 nanocomposite to degrade MB as an organic pollutant. LaMnO3/Fe3O4/GN-1 and LaMnO3/Fe3O4/GN-2 composites were synthesized using the co-precipitation method in a constant 5 wt% of GN. The as-prepared samples were characterized using XRD and TGA. The LaMnO3/Fe3O4/GN-1 and LaMnO3/Fe3O4/GN-2 composites showed the orthorhombic structure of LaMnO3 nanoparticles and the cubic spinel of Fe3O4 nanoparticles, as well as of GN-1 and GN-2. The graphite structure of NGP in LaMnO3/Fe3O4/GN-1 composites was confirmed. However, the peak of graphene in LaMnO3/Fe3O4/GN-2 could not be identified. The photocatalytic efficiency of the LaMnO3/Fe3O4/GN-2 was higher than that of LaMnO3/Fe3O4/GN-1. The enhancement of the photocatalytic light activity can be attributed to the high separation efficiency of electron-hole recombination and to the large surface contact between LaMnO3/Fe3O4 and graphene, which can improve the transfer efficiency of the photocatalytic process. In addition, the effects of catalyst dosage, rate constant, and scavengers were investigated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.