Abstract

An environmental friendly hydrogel adsorbent (DEC@GEL) was successfully manufactured by a facile free-radical polymerization method. Multiple characterizations demonstrated that the adsorbent was rich in functional groups and porous structures. The batch and multisystem adsorption experiments were applied to systematically investigate the adsorption properties of methylene blue (MB), malachite green (MG), indigo sodium dimethyl sulfonate (IC) and tartrazine (TR) in wastewater. The experimental results proved that the kinetic and isotherms of four dyes were more consistent with the pseudo-second-order and Langmuir model, respectively. Notably, the maximum adsorption capacities of MB, MG, TR and IC at 318 K were 2186.85, 2302.53, 1766.13 and 2301.75 mg/g, respectively, which were higher than many adsorbents that had been reported. Recycle experiment demonstrated the high reusability of the DEC@GEL. The selectivity and adsorption column experiments proved that DEC@GEL was not only widely applicable to various dyes, but also provided a positive start for the industrial application. Moreover, the simulated adsorption experiments further demonstrate that DEC@GEL had the prospect of application in real industrial conditions. Finally, four adsorption mechanisms had been proposed. Various adsorption experiments had shown that DEC@GEL was not only efficient in processing dyes, but also had great potential for practical industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.