Abstract

The synergistic therapy, the combination of photothermal therapy and chemotherapy, has become a potential treatment in the battles with cancer. Here, we developed a synergistic therapy tool that based on CuS nanoparticles-decorated graphene oxide functionalized with polyethylene glycol (PEG-GO/CuS) for cervical cancer treatment. The as-synthesized PEG-GO/CuS nanocomposites with excellent biocompatibility was revealed to have high storage capacity for anticancer drug of doxorubicin (Dox) and high photothermal conversion efficiency, and were effectively employed for the ablation of tumor. In addition, the therapeutic efficacy of Dox-loaded PEG-GO/CuS (PEG-GO/CuS/Dox) nanocomposites was evaluated in vitro and in vivo for cervical cancer therapy. In vitro cell cytotoxicity tests of PEG-GO/CuS/Dox demonstrate about 1.3 and 2.7-fold toxicity than PEG-GO/CuS and free Dox under 5 min irradiation with NIR laser at 1.0 W/cm2, owing to both PEG-GO/CuS-mediated photothermal ablation and cytotoxicity of light-triggered Dox release. In mouse models, mouse cervical tumor growth was found to be significantly inhibited by the chemo-photothermal effect of PEG-GO/CuS/Dox nanocomposites, resulting in effective tumor reduction. Overall, compared with chemotherapy or photothermal therapy alone, the combined treatment demonstrates better therapeutic efficacy of cancer in vitro and in vivo. These findings highlight the promise of the highly versatile multifunctional nanoparticles in biomedical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.