Abstract

Noncompressible wounds resulting from accidents and gunshots are typically associated with excessive bleeding, slow wound healing, and bacterial infection. Shape-memory cryogel presents great potential in controlling the hemorrhaging of noncompressible wounds. In this research, a shape-memory cryogel was prepared using a Schiff base reaction between alkylated chitosan (AC) and oxidized dextran (ODex) and then incorporated with a drug-laden and silver-doped mesoporous bioactive glass (MBG). Hydrophobic alkyl chains enhanced the hemostatic and antimicrobial efficiency of the chitosan, forming blood clots in the anticoagulated condition, and expanding the application scenarios of chitosan-based hemostats. The silver-doped MBG activated the endogenous coagulation pathway by releasing Ca2+ and prevented infection through the release of Ag+. In addition, the proangiogenic desferrioxamine (DFO) in the mesopores of the MBG was released gradually to promote wound healing. We demonstrated that AC/ODex/Ag-MBG DFO(AOM) cryogels exhibited excellent blood absorption capability, facilitating rapid shape recovery. It provided a higher hemostatic capacity in normal and heparin-treated rat-liver perforation-wound models than gelatin sponges and gauze. The AOM gels simultaneously promoted infiltration, angiogenesis, and tissue integration of liver parenchymal cells. Furthermore, the composite cryogel exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, AOM gels show great promise for clinical translation in treating lethal, noncompressible bleeding and the promotion of wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call