Abstract
A multifunctional optical fiber sensor fabricated by asymmetric offset splicing is proposed in this Letter. The light is divided into several parts at the offset interface, among which the transmitted light forms the Mach-Zehnder interference (MZI) spectrum while the reflected light forms the Fabry-Perot interference (FPI) spectrum. The online monitoring system is built to create a better light distribution at the offset interface. Theoretical analysis and experimental verification are carried out. The results of the experiment show that the proposed sensor has good characteristics of salinity and temperature, and the salinity sensitivity is as high as -2.4473nm/‰ in the range of 20-40‰; the temperature sensitivity is better than 2.17 nm/°C in the range of 28-48 °C. The two interferometers involved have different responses to temperature and salinity, contributing to the effective elimination of cross-sensitivity. The proposed optical fiber sensor has the benefits of compact size, high sensitivity, and multispectral measurement function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.