Abstract

The reversal-tolerant anode (RTA) has been introduced to mitigate the fatal anode degradation by cell voltage reversal under hydrogen fuel starvation in fuel cell electric vehicles (FCEVs). The RTA employs an oxygen evolution reaction (OER) catalyst in the anode to boost water electrolysis rather than carbon corrosion under fuel starvation. Graphitic carbon-supported IrRu4Y0.5 exhibits outstanding performances for hydrogen oxidation reaction and OER. In single cell test, the IrRu4Y0.5 delivers ~ 21% better performance and longer RTA durability (~ 64 min) than Pt/C catalyst. It is anticipated that IrRuY-based alloy catalysts could replace high-priced Pt-based catalysts as multifunctional RTA for FCEVs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call