Abstract
To enable the widespread application of surface-enhanced Raman scattering (SERS) technique in practical sensing of organic pollutants, it is essential to develop a reliable SERS substrate that offers both high sensitivity and reusability. In this study, we employed a simple and rapid in-situ deposition method to coat Ag nanoparticles onto flower-like Ni(OH)2 spheres, resulting in the formation of Ni(OH)2/Ag composites with excellent photocatalytic performance and SERS activity. These composites were used as a promising SERS analysis tool for effective detection of organic pollutants, including ciprofloxacin hydrochloride (CIP) and methylene blue (MB). Notably, the composites exhibited outstanding detection limits of 10−8 M for MB and 10−7 M for CIP, respectively, and showed a strong linear relationship between SERS intensities and the logarithmic concentration (R2 ≥ 0.97). Moreover, under simulated sunlight irradiation, the Ni(OH)2/Ag composites efficiently degraded MB and CIP molecules within a short period of 120 min for MB and 130 min for CIP. This demonstrated their practical reusability, as evidenced by their consistent performance over five cycles of SERS sensing. These findings underscore the significant potential of these composites for SERS-based detection of trace pollutants and ecological restoration through photocatalytic reactions in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.