Abstract

Recently, multimodal imaging nanoprobes based on the complementary advantages of various imaging methods have attracted considerable attention due to their potential application in the biomedical field. As important bioimaging nanoprobes, lanthanide-doped nanocrystals (NCs) would be expected to improve the related biophotonic technology through integrated multimodal bioimaging. Herein, water-soluble and biocompatible NaYF4:Nd/NaDyF4 NCs were prepared by a solvothermal method combined with hydrophobic interaction with phospholipids as a capping agent. The NaYF4:Nd/NaDyF4 NCs exhibit excellent colloidal stability under physiological conditions. Compared with the bare NaYF4:Nd3+ NCs, the second near-infrared (NIR-II, 1000–1700 nm) fluorescence intensities of Nd3+ ions in the NaYF4:Nd/NaDyF4 core–shell NCs at the emissions of 1058 nm and 1332 nm are enhanced by 3.46- and 1.75-fold, respectively. Moreover, the r2 value of NaYF4:Nd/NaDyF4 NCs as T2-weighted contrast agents is calculated to be 44.0 mM−1 s−1. As a novel multimodal imaging nanoprobe, the NaYF4:Nd/NaDyF4 NCs can be employed for both NIR-II fluorescence and magnetic resonance imaging (MRI). The phospholipid-modified NaYF4:Nd/NaDyF4 NCs demonstrate in vitro and in vivo multimodal NIR-II fluorescence imaging and MRI of HeLa cells and tumors, respectively. This study provides an effective strategy for the development of novel multimodal probes for the medical application of nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.