Abstract
Anatase is known to decompose organic material by photocatalysis and to enhance surface wettability once irradiated by ultraviolet (UV) light. In this study, pulse magnetron-sputtered anatase thin films were investigated for their suitability with respect to specific biomedical applications, namely superhydrophilic and biofilm degrading implant surfaces. UV-induced hydrophilicity was quantified by static and dynamic contact angle analysis. Photocatalytic protein decomposition was analyzed by quartz crystal microbalance with dissipation. The surfaces were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The radical formation on anatase, responsible for photocatalytic effects, was analyzed by electron spin resonance spectroscopy. Results have shown that the nanocrystalline anatase films, in contrast to reference titanium surfaces, were sensitive to UV irradiation and showed rapid switching towards superhydrophilicity. The observed decrease in carbon adsorbents and the increase in the fraction of surface hydroxyl groups upon UV irradiation might contribute to this hydrophilic behavior. UV irradiation of anatase pre-conditioned with albumin protein layers induces the photocatalytic decomposition of these model biofilms. The observed degradation is mainly caused by hydroxyl radicals. It is concluded that nanocrystalline anatase films offer different functions at implant interfaces, e.g. bedside hydrophilization of anatase-coated implants for improved osseointegration or the in situ decomposition of conditioning films forming the basal layer of biofilms in the oral cavity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.