Abstract

AbstractFor breast cancer patients who have undergone breast‐conserving surgery, effective treatments to prevent local recurrences and metastases is very essential. Here, a local injectable therapeutic platform based on a thermosensitive PLEL hydrogel with near‐infrared (NIR)‐stimulated drug release is developed to achieve synergistic photothermal immunotherapy for prevention of breast cancer postoperative relapse. Self‐assembled multifunctional nanoparticles (RIC NPs) are composed of three therapeutic components including indocyanine green, a photothermal agent; resiquimod (R848), a TLR‐7/8 agonist; and CPG ODNs, a TLR‐9 agonist. RIC NPs are physically incorporated into the thermosensitive PLEL hydrogel. The RIC NPs encapsulated PLEL hydrogel (RIC NPs@PLEL) is then locally injected into the tumor resection cavity for local photothermal therapy to ablate residue tumor tissues and produce tumor‐associated antigens. At the same time, NIR also triggers the release of immune components CPG ODNs and R848 from thermoresponsive hydrogels PLEL. The released immune components, together with tumor‐associated antigens, work as an in situ cancer vaccine for postsurgical immunotherapy by inducing effective and sustained antitumor immune effect. Overall, this work suggests that photothermal immunotherapy based on local hydrogel delivery system has great potential as a promising tool for the postsurgical management of breast cancer to prevent recurrences and metastases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.