Abstract
Although nanocarriers containing perfluorocarbon (PFC) have been widely investigated as an ultrasound (US) imaging agent and a high intensity focused ultrasound (HIFU) agent, these carriers have suffered from low stability and biocompatibility limiting their further biomedical applications. Here, we developed surface cross-linked polymer nanodroplets as a HIFU therapeutic agent guided by bimodal photoacoustic (PA) and US imaging. Pluronic F127 was reacted with 4-nitrophenyl chloroformate (NPC) and mixed with naphthalocyanine (Nc) in dichloromethane, which was added into the aqueous solution of amine-functionalized six-arm-branched poly(ethylene glycol) (PEG) to form an oil-in-water emulsion for the cross-linking reaction between the terminal NPC of Pluronic F127 and the primary amine of six-arm PEG. The resulting solution was sonicated with liquid perfluorohexane (PFH) to prepare PEG cross-linked Pluronic F127 nanoparticles encapsulating Nc and PFH (Nc/PFH@PCPN). Nc/PFH@PCPN appeared to be stable without any coalescence or vaporization in the physiological condition. Upon the application of HIFU, Nc/PFH@PCPN was vaporized and showed increased US intensity for 180 min. The Nc dye in the nanodroplets enabled the stable encapsulation of PFH and the bimodal US/PA imaging. In vivo PA/US image-guided HIFU ablation therapy confirmed that the nanodroplets increased the cavitation effect, induced necrosis and apoptosis of tumor cells, and reduced tumor growth significantly for 12 days. Taken together, the multifunctional Nc/PFH@PCPN was successfully developed as a new platform for PA/US image-guided HIFU therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.