Abstract

The excessive depositions of β-amyloid (Aβ) and abnormal level of reactive oxygen species (ROS) are considered as the important pathogenic factors of Alzheimer's disease (AD). Strategies targeting only one of them have no obvious effects in clinic. In this study, a multifunctional nanocarrier CICe@M-K that crosses the blood-brain barrier (BBB) efficiently was developed for inhibiting Aβ aggregation and scavenging ROS synchronously. Antioxidant curcumin (Cur) and photosensitizer IR780 were loaded in mesoporous silica nanomaterials (MSNs). Their surfaces were grafted with cerium oxide nanoparticles (CeO2 NPs) and a short peptide K (CKLVFFAED). Living imaging showed that CICe@M-K was mainly distributed in the brain, liver, and kidneys, indicating CICe@M-K crossed BBB efficiently and accumulated in brain. After the irradiation of 808 nm laser, Cur was continuously released. Both of Cur and the peptide K can recognize and bind to Aβ through multiple interaction including π-π stacking interaction, hydrophobic interaction, and hydrogen bond, inhibiting Aβ aggregation. On the other hand, Cur and CeO2 NPs cooperate to relieve the oxidative stress in the brains by scavenging ROS. In vivo assays showed that the CICe@M-K could diminish Aβ depositions, alleviate oxidative stress, and improve cognitive ability of the APP/PS1 AD mouse model, which demonstrated that CICe@M-K is a potential agent for AD treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call