Abstract

Polylactic acid (PLA) nanofibrous scaffolds have received extensive attention in the field of tissue engineering due to their excellent degradability, biocompatibility and the biomimetic extracellular matrix (ECM) topographies. However, the cell affinity and osteogenic activity of PLA scaffolds is not satisfactory because of their intrinsic hydrophobicity, the absence of cell recognition sites and the nucleation sites of the in vivo biomineralization. Furthermore, effective anti-inflammatory activity for the in vivo scaffold could not be ignored, so a strategy to develop a multifunctional PLLA (poly-L-lactic acid) nanofibrous scaffold with improved hydrophilicity, osteoinductivity, excellent near-infrared photothermal-responsive drug release capacity and anti-inflammatory activity via incorporating sodium alginate microspheres decorated with strontium and ibuprofen-loaded black phosphorus (BP + IBU@SA microspheres) into aminated modified PLLA nanofiber network is proposed in this study. Scanning electron microscopy (SEM) observation showed that the BP + IBU@SA microspheres were homogeneously dispersed into the modified PLLA matrix with uniform nanofiber structure and the chemical composition of the as-prepared scaffolds was confirmed by X-ray diffraction analysis (XRD) and elemental mapping. The photothermal property of the scaffolds was assessed under near-infrared (NIR) light irradiation, the results manifested that the entrapment of BP nanosheets endowed PLLA nanofibrous scaffold with significantly high photothermal conversion efficiency and optical cycle stability. Meanwhile, the scaffold also displayed an excellent photothermal-responsive intelligent drug release performance toward Sr2+ and ibuprofen. Moreover, the in vitro studies revealed that the as-developed scaffolds possessed a good biocompatibility for cell adhesion and proliferation and an improved bioactivity to induce apatite formation. All these results indicated the potential of the fabricated scaffolds in tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.