Abstract
Mixed tin-lead perovskite solar cells can reach bandgaps as low as 1.2eV, offering high theoretical efficiency and serving as base materials for all-perovskite tandem solar cells. However, instability and high defect densitiesat the interfaces, particularly the buried surface,have limited performance improvements. In this work, we present the modification of the bottom perovskite interface with multifunctional hydroxylamine salts. These salts can effectively coordinate the different perovskite components, having critical influences in regulating the crystallization process and passivating defects of varying nature. The surface modification reduced traps at the interface and prevented the formation of excessive lead iodide, enhancing the quality of the films. The modified devices presented fill factors reaching 81% and efficiencies of up to 23.8%. The unencapsulated modified devices maintained over 95% of their initial efficiency after 2000 h of shelf storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.