Abstract

Despite the fact that the 2D structure Ti3C2Tx with abundant defects and functional groups contributes to the high microwave absorption (MA) performance, it is difficulty to improve the strength and bandwidth by pursuing higher conductivity or loading more groups due to the limitation of intrinsic properties. Therefore, it is important to ingeniously design efficient Ti3C2Tx based MA composites assembling the features of abundant surface groups, good dispersibility, multiple composition, and precise structure. Inspired by the fact that Ti3C2Tx contains thermodynamically metastable marginal Ti atoms, TiO2 nanoparticles can be grown in-situ on Ti3C2Tx nanosheets uniformly and increase the spacing of Ti3C2Tx layers, and then MnFe2O4 nanoparticles are introduced into the layers of Ti3C2Tx by electrostatic self-assembly method for optimized impedance matching. This designed hierarchical MnFe2O4/TiO2/Ti3C2Tx composites shows excellent MA performance, and the minimum reflection loss (RLmin) reaches −46.91 dB with a thickness of 2.5 mm at frequency of 10.4 GHz. The high MA performance mainly comes from the enhanced interfacial polarization induced by edges location and interface region among TiO2, MnFe2O4, and Ti3C2Tx. In addition, the conduction loss existed in the interior untreated Ti3C2Tx, the dielectric loss generated by multiple composition, the multiple scattering from improved large surface specific area all contribute to the excellent MA performance. Meanwhile, the simple preparation process and good stability storage at room temperature under air atmosphere of the MnFe2O4/TiO2/Ti3C2Tx composites promote its exploration on practical use, and the lab-gown cloth coated with MnFe2O4/TiO2/Ti3C2Tx composites shows better electromagnetic shielding properties, hydrophobicity, and heat transfer ability than pure fabric, showing the potential for practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call