Abstract

Flexible all-solid-state supercapacitors (ASSSCs) based on stable gel electrolyte have attracted enormous attention due to their potential application for wearable and portable electronic devices, but usually suffer from lack of structural stability for integrated devices during the bending and folding process, mainly due to the weak interfacial interaction force between electrode materials and gel electrolyte. We report a novel high-strength ASSSC based on activated multiwalled carbon nanotubes anchored on graphite fibers (GF@aMWNTs) by electrostatic assembly and electrophoretic deposition (EPD). With high areal density of aMWNTs, the GF@aMWNTs fabricated by EPD technique exhibit the maximum tensile strength of 47.9 ± 2.0 MPa for the sandwich-type GF@aMWNT/PVA/GF@aMWNT films, mainly attributed to the microporous aMWNTs as an important “bridging” role in the combination of GF electrodes and PVA electrolyte. The assembled symmetric ASSSC based on the GF@aMWNT electrodes, can provide an outstanding specific capacitance of 177 F g−1 at 1 A g−1, a maximum power density of 25 kW kg−1 (13.1 Wh kg−1) as well as excellent capacitance stability in cycling test and bending state. This high-rate ASSSC is anticipated to open up an exciting route to enhance the structural strength of integrated devices for high-efficient energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.