Abstract

We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λexc = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.