Abstract

Mosquito compound eyes are elaborate multifunctional hierarchical structures. The presence of ordered curved features spanning length scales of nanometers to millimeters provides the mosquito eye with a wide field of view, an infinite depth of field, and antifogging properties. Developing bio-inspired compound lenses is challenging because of the need to mimic all characteristic curvatures along with their functionalities. Herein, we show how the curvature inherent to nanoparticles, emulsion droplets, and liquid marbles can be employed to mimic the hierarchical structure and functionality of mosquito compound eyes. At the nanometer to micrometer length scale we employ nanoparticle-stabilized emulsion droplets of photocurable oil to form microlenses with nanoscale surface features. After polymerization, the microlenses form a monolayer on an oil droplet to create an optically clear, millimeter scale, liquid marble that functions as a compound lens. We characterize the optical and surface properties of the compound lenses and find that they reproduce the functionality of the mosquito eye. Additionally, we exploit the mobility and reconfigurability of liquid marbles to create arrays (centimeter scale) of compound lenses and other types of functional lenses such as the Janus lens that magnifies the image acquired by the compound lens. Simple and scalable methods to create compound lenses could aid in the development of miniaturized advanced vision systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call