Abstract
Nanomaterials with enzyme-like catalytic features (nanozymes) find wide use in analytical sensing. Apart from catalytic characteristics, some other interesting functions coexist in the materials. How to combine these properties to design multifunctional nanozymes for new sensing strategy development is challenging. Besides, in nanozymes it is still a challenge to conveniently control the catalytic process, which also hinders their further applications in advanced biochemical analysis. To remove the above barriers, here we design a light-controllable multifunctional nanozyme, namely manganese-inserted cadmium telluride (Mn–CdTe) particles, that integrates oxidase-like activity with luminescence together, to achieve the fluorometric/colorimetric dual-mode detection of toxic mercury ions (Hg2+) at ambient pH. The Mn–CdTe exhibits a light-triggered oxidase-mimicking catalytic behavior to induce chromogenic reactions, thus enabling one to start or stop the catalytic progress easily via applying or withdrawing light irradiation. Meanwhile, the quantum dot material can exhibit bright photoluminescence, which provides the fluorometric channel to sense targets. When Hg2+ is introduced, it rapidly leans toward Mn–CdTe through electrostatic interaction and Te–Hg bonding and induces the aggregation of the latter. As a result, the luminescence of Mn–CdTe is dynamically quenched, and the masking of active sites in aggregated Mn–CdTe leads to the decrease of light-initiated oxidase-mimetic activity. According to this principle, a new fluorometric/colorimetric bimodal method was established for Hg2+ determination with excellent performance. A 3D-printed portable platform combining paper-based test strips and an App-equipped smartphone was further fabricated, making it possible to achieve in-field sensing of the analyte in various matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.