Abstract
Shared-aperture technology for multifunctional planar systems, performing several simultaneous tasks, was first introduced in the field of radar antennas. In photonics, effective control of the electromagnetic response can be achieved by a geometric-phase mechanism implemented within a metasurface, enabling spin-controlled phase modulation. The synthesis of the shared-aperture and geometric-phase concepts facilitates the generation of multifunctional metasurfaces. Here shared-aperture geometric-phase metasurfaces were realized via the interleaving of sparse antenna sub-arrays, forming Si-based devices consisting of multiplexed geometric-phase profiles. We study the performance limitations of interleaved nanoantenna arrays by means of a Wigner phase-space distribution to establish the ultimate information capacity of a metasurface-based photonic system. Within these limitations, we present multifunctional spin-dependent dielectric metasurfaces, and demonstrate multiple-beam technology for optical rotation sensing. We also demonstrate the possibility of achieving complete real-time control and measurement of the fundamental, intrinsic properties of light, including frequency, polarization and orbital angular momentum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.