Abstract

Multifunction integration of solar cells in load-bearing structures can enhance overall system performance by reducing parasitic components and material redundancy. The article describes a manufacturing strategy, named the co-curing scheme, to integrate thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites and eliminate parasitic packaging layers. In this scheme, an assembly of a solar cell and a prepreg is cured to form a multifunctional composite in one processing step. The photovoltaic performance of the manufactured structures is then characterized under controlled cyclic mechanical loading. The study finds that the solar cell performance does not degrade under 0.3%-strain cyclic tension loading up to 100 cycles. Significant degradation, however, is observed when the magnitude of cyclic loading is increased to 1% strain. The present study provides an initial set of data to guide and motivate further studies of multifunctional energy harvesting structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.