Abstract
Multifunctionality and self-powering are key technologies for next-generation wearable electronics. Herein, an interdigitated MXene/TiS2-based self-powered intelligent pseudocapacitive iontronic sensor system is designed, realizing integration of energy storage and pressure-sensitive sensing function into one device. The intercalation of TiS2 nanosheet can effectively prevent self-stacking of MXene and results in mesoporous cross-linked framework, therefore exposing more active sites and broadening the electron/ion transport channels. The pressure sensing performance together with developed all-solid-state microsupercapacitor is explored systematically. When applied in a symmetrical microsupercapacitor, it presents a satisfactory energy density of 31.6 Wh/kg at 400 W/kg and 79.8% capacitance retention after 10 000 cycles. Meanwhile, with MXene/TiS2//MXene/TiS2 interdigitated structure as flexible self-powering pressure sensor, it illustrates outstanding pressure-sensing response toward external pressure, realizing accurate and continuous detection of human body motion signals. It is believed that this work proposes a feasible strategy by integrating pressure-sensing with a self-powering function for the next-generation self-powered E-skin electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.