Abstract
Orthopaedic metallic implant's long-term success strongly depends upon the two main factors: osseointegration and antibacterial character. Bioceramic (hydroxyapatite and hopeite) coatings have been proven effective for getting strong osseointegration and antibacterial character. However, deterioration of bioceramic coatings during the implantation period can adversely affect its overall biological performance. To conquer this issue, this research work recommends an innovative process route of laser rapid manufacturing for depositing bioceramic (hydroxyapatite and hopeite) coatings with metallurgical bonding. Microstructure, phase composition, antibacterial efficacy and bioactivity were evaluated using scanning electron microscopy, X-ray diffraction, fluorescence-activated cell sorting technique and simulated body fluid immersion test. The promising results obtained from these characterizations and testing establish the new process route laser rapid manufacturing as an effective alternative to deposit multifunctional bioceramic (hydroxyapatite and hopeite) coatings on metallic prosthetic-orthopaedic implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.