Abstract

Transplantation of allogeneic adult spinal cord tissues (aSCTs) to replace the injured spinal cord, serves as a promising strategy in complete spinal cord injury (SCI) repair. However, in addition to allograft immune rejection, damage-associated molecular pattern (DAMP)-mediated inflammatory microenvironments greatly impair the survival and function of transplants. In this study, we aimed to regulate the immune microenvironment after aSCT implantation by developing a functional hybrid gelatin and hyaluronic acid hydrogel (F-G/H) modified with cationic polymers and anti-inflammatory cytokines that can gelatinize at both ends of the aSCT to glue the grafts for perfect matching at defects. The F-G/H hydrogel exhibited the capacities of DAMP scavenging, sustainably released anti-inflammatory cytokines, and reduced lymphocyte accumulation, thereby modulating the immune response and enhancing the survival and function of aSCTs. When the hydrogel was used in combination with a systemic immunosuppressive drug treatment, the locomotor functions of SCI rats were significantly improved after aSCTs and F-G/H transplantation. This biomaterial-based immunomodulatory strategy may provide the potential for spinal cord graft replacement for treating SCI. Statement of significanceIn this study, we aimed to regulate the immune microenvironment by developing a functional hybrid gelatin and hyaluronic acid hydrogel (F-G/H) modified with cationic polymers and anti-inflammatory cytokines that can gelatinize at both ends of the aSCT to glue the grafts for perfect matching at defects. We found that with the treatment of F-G/H hydrogel, the aSCT survival and function was significantly improved, as a result of reducing recruitment and activation of immune cells through TLR- and ST-2- related signaling. With the combination of immunosuppressive drug treatment, the locomotor functions of SCI rats were significantly improved after aSCTs and F-G/H transplantation. Findings from this work suggest the potential application of the F-G/H as a biomaterial-based immunoregulatory strategy for improving the therapeutic efficiency of the transplanted spinal cord graft for spinal cord injury repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call