Abstract

Intermittency of renewable energy sources can be profitably faced using efficient energy storage systems. Reversible solid oxide cells (RSOCs) able to operate with carbon-containing species are likely among the most appealing choices. Energy can be obtained by natural gas and/or biogas (SOFC mode), with useful recovery of CO2 in the exhausts. Besides, if the electrode is also active towards CO2 electrolysis (SOEC mode), CO2 is reduced to CO and O2. In this work a composite material with in-situ formed Ni-Fe alloy catalyst consisting of La1.2Sr0.8Fe0.6Mn0.4O4 Ruddlesden-Popper perovskite and Ni-Ce0.85Sm0.15O2-δ fluorite was developed as a multi-functional fuel-electrode for RSOCs. The composite electrode was tested in SOFC mode as anode for hydrogen, dry methane and carbon monoxide oxidation and showed power density outputs of 657, 668 and 527 mW/cm2 at 850 °C, respectively, together with redox stability and coking tolerance for over 120 h. In SOEC mode, it was tested as cathode and delivered 2.66 A/cm2 at 2 V in a 95:5 CO2:CO mixture, retaining a current density of 1 A/cm2 for more than 40 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.